Routine Laboratory Tests with Nutritional Implications

This table presents a partial listing of some uses of commonly performed lab tests that have implications for nutritional problems.

Laboratory Test	Acceptable Range	Description		
Hematology				
Red blood cell (RBC) count	Male: 4.3–5.7 million/μL Female: 3.8–5.1 million/μL	Number of RBC; aids anemia diagnosis.		
Hemoglobin (Hb)	Male: 13.5–17.5 g/dL Female: 12.0–16.0 g/dL	Hemoglobin content of RBC; aids anemia diagnosis.		
Hematocrit (Hct)	Male: 39–49% Female: 35–45%	Percentage RBC in total blood volume; aids anemia diagnosis.		
Mean corpuscular volume (MCV)	81–99 fL	RBC size, helps to distinguish between microcytic and macrocytic anemias.		
Mean corpuscular hemoglobin concentration (MCHC)	31–37% Hb/cell	Hb concentration within RBCs, helps to distinguish iron-deficiency anemia.		
White blood cell (WBC) count	4500–11,000 cells/μL	Number of WBC; general assessment of immunity.		
Blood Chemistry				
Serum Proteins				
Total protein	6.4-8.3 g/dL	Protein levels are not specific to disease or highly sensitive; they can reflect poor protein intake, illness or infections, changes in hydration or metabolism, pregnancy, or medications.		
Albumin	3.4-4.8 g/dL	May reflect illness or PEM; slow to respond to improvement or worsening of disease.		
• Transferrin	200–400 mg/dL >60 yr: 180–380 mg/dL	May reflect illness, PEM, or iron deficiency; slightly more sensitive to changes than albumin		
Prealbumin (transthyretin)	10-40 mg/dL	May reflect illness or PEM; more responsive to health status changes than albumin or transfer		
C-reactive protein	68-8200 ng/mL	Indicator of inflammation or disease.		
Serum Enzymes				
Creatine kinase (CK)	Male: 38–174 U/L Female: 26–140 U/L	Different forms of CK are found in muscle, brain, and heart. High levels in blood may indicate heart attack, brain tissue damage, or skeletal muscle injury.		
Lactate dehydrogenase (LDH)	208–378 U/L	LDH is found in many tissues. Specific types may be elevated after heart attack, lung damage, or liver disease.		
Alkaline phosphatase	25-100 U/L	Found in many tissues; often measured to evaluate liver function.		
Aspartate aminotrans- ferase (AST, formerly SGOT)	10-30 U/L	Usually monitored to assess liver damage; elevated in most liver diseases. Levels are somewhat increased after muscle injury.		
Alanine aminotransferase (ALT, formerly SGPT)	Male: 10–40 U/L Female: 7–35 U/L	Usually monitored to assess liver damage; elevated in most liver diseases. Levels are somewhat increased after muscle injury.		
Serum Electrolytes				
• Sodium	136-146 mEq/L	Helps to evaluate hydration status or neuromuscular, kidney, and adrenal functions.		
Potassium	3.5-5.1 mEq/L	Helps to evaluate acid-base balance and kidney function; can detect potassium imbalances.		
Chloride	98–106 mEq/L	Helps to evaluate hydration status and detect acid-base and electrolyte imbalances.		
Other				
• Glucose	74–106 mg/dL	Detects risk of glucose intolerance, diabetes mellitus, and hypoglycemia; helps to monitor diabetes treatment.		
Glycosylated hemoglo- bin (Hb A _{1c})	5.0-7.5% of Hb	Used to monitor long-term blood glucose control (approximately 1 to 3 months prior).		
Blood urea nitrogen (BUN)	6-20 mg/dL	Primarily used to monitor kidney function; value is altered by liver failure, dehydration, or sho		
Uric acid	Male: 3.5–7.2 mg/dL Female: 2.6–6.0 mg/dL	Used for detecting gout or changes in kidney function; levels affected by age and diet; varie among different ethnic groups.		
 Creatinine (serum or plasma) 	Male: 0.7–1.3 mg/dL Female: 0.6–1.1 mg/dL	Used to monitor renal function.		

NOTE: $\mu L =$ microliter; dL = deciliter; fL = femtoliter; ng = nanogram; U/L = units per liter; mEq = milliequivalents. SOURCE: L. Goldman and J. C. Bennett, eds. *Cecil Textbook of Medicine* (Philadelphia: Saunders, 2000).

Yasmeen Bashmil Page 1

TABLE E-2 Laboratory Tests Useful in Evaluating Nutrition-Related Anemias

Test or Test Result	What It Reflects		
For Anemia (general)			
Hemoglobin (Hg)	Total amount of hemoglobin in the red blood cells (RBC		
Hematocrit (Hct)	Percentage of RBC in the total blood volume		
Red blood cell (RBC) count	Number of RBC		
Mean corpuscular volume (MCV)	RBC size; helps to determine if anemia is microcytic (iron deficiency) or macrocytic (folate or vitamin B_{12} deficiency		
Mean corpuscular hemoglobin concentration (MCHC)	Hemoglobin concentration within the average RBC; helps to determine if anemia is hypochromic (iron deficiency) or normochromic (folate or vitamin B ₁₂ deficiency)		
Bone marrow aspiration	The manufacture of blood cells in different developmenta states		
For Iron-Deficiency Anemia			
↓ Serum ferritin	Early deficiency state with depleted iron stores		
↓ Transferrin saturation	Progressing deficiency state with diminished transport iro		
Erythrocyte protoporphyrin	Later deficiency state with limited hemoglobin production		
For Folate-Deficiency Anemia			
↓ Serum folate	Progressing deficiency state		
↓ RBC folate	Later deficiency state		
For Vitamin B ₁₂ –Deficiency Anemia			
↓ Serum vitamin B ₁₂	Progressing deficiency state		
Schilling test	Absorption of vitamin B ₁₂		

Yasmeen Bashmil Page 2

TABLE E-3 Criteria for Asses			Defision av Value
Test	Age (yr)	Gender	Deficiency Value
Hemoglobin (g/dL)	0.5–10	M-F	<11
	11–15	М	<12
		F	<11.5
	>15	М	<13
		F	<12
	Pregnancy		<11
Hematocrit (%)	0.5-4	M-F	<32
	5–10	M-F	<33
	11–15	М	<35
		F	<34
	>15	М	<40
		F	<36
Serum ferritin (µg/L)	0.5–15	M-F	<10
	>15	M-F	<12
Total iron-binding capacity (µg/dL)	>15	M-F	>400
Serum iron (μg/dL)	>15	M-F	<60
Transferrin saturation (%)	0.5-4	M-F	<12
	5–10	M-F	<14
	>10	M-F	<16
Erythrocyte protoporphyrin (μg/dL RBC)	0.5-4	M-F	>80
7 - 7 - 7 - 7 - 7	>4	M-F	>70
	(100 CH4. Th)	- CACLOS	

Yasmeen Bashmil Page 3